Wednesday, November 28, 2012

1211.6363 (A. Scheikh Obeid et al.)

E2 strengths and transition radii difference of one-phonon 2+ states of
92Zr from electron scattering at low momentum transfer
   [PDF]

A. Scheikh Obeid, O. Burda, M. Chernykh, A. Krugmann, P. von Neumann-Cosel, N. Pietralla, I. Poltoratska, V. Yu. Ponomarev, C. Walz
Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can be measured by a decomposition of proton and neutron transition radii with a combination of inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference could be experimentally established for the neutron components, while about equal proton transition radii were indicated by the data. Method: Differential cross sections for the excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the (e,e') reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6 fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2; 2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are determined from a comparison of the experimental cross sections to quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present data -0.12(51) fm is obtained. Conclusions: Electron scattering at low momentum transfers can provide information on transition radii differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+_(1,2) states in 92Zr are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be determined with high precision limited only by the available experimental information on the B(E2; 2+_1 -> 0+_1) value.
View original: http://arxiv.org/abs/1211.6363

No comments:

Post a Comment