Wednesday, April 4, 2012

1204.0466 (M. B. Tsang et al.)

Constraints on the symmetry energy and neutron skins from experiments
and theory
   [PDF]

M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C. J. Horowitz, Jenny Lee, W. G. Lynch, Z. Kohley, R. Lemmon, P. Moller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña, S. J. Yennello
The symmetry energy contribution to the nuclear Equation of State (EoS) impacts various phenomena in nuclear astrophysics, nuclear structure, and nuclear reactions. Its determination is a key objective of contemporary nuclear physics with consequences for the understanding of dense matter within neutron stars. We examine the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy and its density dependence at and somewhat below normal nuclear matter density. Some of these constraints have been derived from properties of nuclei. Others have been derived from the nuclear response to electroweak and hadronic probes. We also examine the most frequently used theoretical models that predict the symmetry energy and its slope. By comparing existing constraints on the symmetry pressure to theories, we demonstrate how the contribution of the three-body force, an essential ingredient in neutron matter models, can be determined.
View original: http://arxiv.org/abs/1204.0466

No comments:

Post a Comment