Laura Tolos, Daniel Cabrera, Carmen Garcia-Recio, Raquel Molina, Juan Nieves, Eulogio Oset, Angels Ramos, Olena Romanets, Lorenzo Luis Salcedo
The properties of strange ($K$, $\bar K$ and $\bar K^*$) and open-charm ($D$, $\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\bar K$ and $\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\gamma A \to K^+ K^{*-} A^\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\bar K^*$ meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with $1/2^+$ and $3/2^+$ baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of $D$-mesic nuclei at FAIR energies.
View original:
http://arxiv.org/abs/1211.7286
No comments:
Post a Comment