Tuesday, November 13, 2012

1211.2480 (T. Furumoto et al.)

Channel coupling effect and important role of imaginary part of coupling
potential for high-energy heavy-ion scatterings
   [PDF]

T. Furumoto, Y. Sakuragi
The recent works by the present authors and their collaborator predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon $E =$ 200 -- 300 MeV/u on the basis of the complex $G$-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have analyzed the energy dependence of the coupling effect with the Microscopic Coupled Channel (MCC) method and its relation to the elastic and inelastic-scattering angular distributions in detail in the case of the $^{12}$C + $^{12}$C system in the energy range of $E =$ 100 -- 400 MeV/u. The large channel coupling effect is clearly seen in the elastic cross section although the incident energies are enough high. The dynamical polarization potential is derived to investigate the channel coupling effect. Moreover, we analyze the effect of imaginary part of the coupling potential on elastic and inelastic cross sections.
View original: http://arxiv.org/abs/1211.2480

No comments:

Post a Comment