Jiguang Li, Cédric Nazé, Michel Godefroid, Stephan Fritzsche, Gediminas Gaigalas, Paul Indelicato, Per Jönsson
It was recently shown that dielectronic recombination measurements can be used for accurately inferring changes in the nuclear mean-square charge radii of highly-charged lithium-like neodymium [Brandau et al., Phys. Rev. Lett. 100 073201 (2008)]. To make use of this method to derive information about the nuclear charge distribution for other elements and isotopes, accurate electronic isotope shift parameters are required. In this work, we calculate and discuss the relativistic mass- and field-shift factors for the two $2s ^{2}S_{1/2} - 2p ^{2}P^{o}_{1/2,3/2}$ transitions along the lithium isoelectronic sequence. Based on the multiconfiguration Dirac-Hartree-Fock method, the electron correlation and the Breit interaction are taken into account systematically. The analysis of the isotope shifts for these two transitions along the isoelectronic sequence demonstrates the importance and competition between the mass shifts and the field shifts.
View original:
http://arxiv.org/abs/1207.6264
No comments:
Post a Comment